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The Effect of Elastic Strains and Depletion on Nucleation and
Growth in Binary Solutions

7
As discussed in preceding papers /1,2/ elastic strains quantita-
tively and gualitatively modify the kinetics of growth aof the
supercritical clusters and the cluster evelution in the late
stage of (Ostwald ripening.

In ﬁhis paper we restrict ourselves mainly to the initial
stage of the phase transition including the formation of clu-
sters and their growth up to an overcritical si}e.

The investigations are based on a thermodynamic analysis pre-
sented in the foregoiné papers /3,4,5/.

1. Rate souation
We consider a binary system with the thermodynamic constraints
no=ny +n, = const., p = const., T = const. (1.1)

where n is,thg total mole number in the system consisting'of
two components, p the external pressure and T the temperature.
The molar fraction of the initial stage is ‘introduced as x =
nz/n. In the heterogeneous state fhe kntal nmole number is divi=
ded into the mole numder of the cluster phase, denoted by < ,
énd‘the mole number of the matrix phase indicated. by B . Assu-
nming as before /4,6,7/,. that the clusters arc formed only by
-particles of cowponent 2 it yields ﬁz = n25+ n4'= const. and we
may write for the nolar fraction of the matrix:

) Mg i nx =Ny : .
Al e : (.2)

The cluster phase shall be spatially distributed in clusters

with the particle number 3 (373 2) i

N
ng = Nt 20 NS o (1.3)
=2



It means that the most important contributions to the’change of
X with temperature are the temperature depéndence of Coeq and

the dependence of xg on x reflecting the influence of the total
number of particles n. '
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Nj being the number of clusters of size ] and HA the Avogadro
number. Denoting the particle number of component 2 of the ma-
trix by N1 (that means free particles) it yields

-1 ’ .
nZP = NA N1 (i.4)
and we obtain the following coentinuous equation resulting from
the conservation of particles in the system /8/

. (Y f
?iﬁl = —19 E: 3N, . (1.5)
3t ot %._L" Ji
The change of the number-of clusters of size J with time can be
described by a rate equation. Assuming like in classical nuclea-
tion theory /9/ that the growth of clusters occurs only by the
attachment of free particles, neglecting collisions of iarger
clusters, and assuming further that the clusters shrink de-
taching single particles  the rate equation can be written in

the form:

D, :

;gfi =Ty - Iy 3= 2,3, 0,0 (1.6)
Ij is the netto rate of formation of clusters of size 3. It
depends on time because the actual number of clusters of size j
as well as the transition rates w' and w~ both ueﬁend on time:

(1.7)

v
o

() = wg(t)Nj<t) - v (t>r3+1( )

Ed. (1.6) represents a hierarchy of differential equatibns which
must be soclved successivelyvy teo know the actual cluster distribu-
tion N.(t) (i=1,2,...4M). For a calculation we have to determine

first ihe itransition rates w' and w~

2. Eguilibrium cluster distribution
In order to determine the transition rates we make use ol the
condition otf detailled balance /8/. That means for finite sv-
stems in eguilibrium the nettoc rate 11 (ea. 1.7) must vanish for
~every J, resulting in: :
+,.0 - a ° . . N
Moo= . ‘- . 9
wJNJ WJ+1NJ+1 (2.1)
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Ng denotes the equilibrium cluster distribution which can be obé
tained from a mass action law by:.
AG. . ‘ '

o _ - i) .

Nj = Nl BxXp & kBT } : ' ) (2.2)
Nl = NA-n2 gives the normalization. ‘ABj is the Gibbs free ener-
gy to form a cluster of size j (not the thermodynamic potential
of the whole system). It is given by /9/

86, = - Ag e+ G 32/3 v (2.3
The first term of eq. (2.3) describes the binding ernergy in the
cluster (bulk phase), the second term the surface energy caused
. by the formation of a (spherical) surface with the surface ten-
sion 53. The bind%ng energy per particle in-the cluster can be
approximated classically by /9/:

fi% = 1n E~557—j4 (2.4)
] Jeqt ‘ ‘

Here c is the total particle density in the system being con-
stant, x is the initial molar fraction of component 2 and ]
Gzeq(T)'is the equilibrium concentration of component 2 in the
matrix depending on t;mperature by /18/ :

.

11
C9eq(T) = Sgq(Ty) egp{%~~—(7€ ‘"T‘)} @)

g means tHe solution heat per particle.

The ratio cx/c .is a measure of the supersaturation in the

2eq ;
classically infinite system. . .
For the finite system we have to consider firstly the deple-
tion of the matrix, that means, x must be replaced by the‘actual
molar fraction ks /6,7/. Secondly, the existénce of elastic
strains caused by the cluster formation in the matrix decreases
the effective supersaturation by a certain amount ﬁVg&: as has
been discussed in the foregoing paper /4/. £ is a measure for
the elastic strains. Assuming strains of a Nabarro-type /5/,¢
depends only on the.elastic modul, the Poi8sonian number, the
molar volumes of the bure componants 1,2, of the phases J.and,p
.(see /4/). vg¢'is the molar volume of component 2 in the clu-
ster. With respect to depletion and elastic strains in the con-

i
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sidered system we introduce now instead of eq. (2.4):
. H

: Ag® e ) vD . )
kH = 1n _._..(_5 ¢ k T . (2.6).
Considering the temperature dependence of CZeq (eq. 2.5) we
arrive at:
' : ’ T-T ve :
~Ag,e ) cxp -Tq EVow
kB = ln —ﬁ——y kB TO ) - kBT (2.7)

In the following zkge (eq. 2.7) gives a measure of the effective
actual supersaturatioh in the system in contrast to the initial
supersaturation (eq. 2.4).

The formation energy AG. (eg. 2.3) has got a maximum for the

critical ecluster size ¢ Auji/B
0 0 .
.. ngza.( Xp o EVa1 28Va4 (2.8)
cr k T Czeq D) kBT Age(kBT)z

This equation for the critical radius r cr dgrees obviously with
the equilibrium condition derlved before /4/ for the considered
system with respect to elastic strains.

3. Transition rates

Because the aquilibrium cluster ‘distribution Ng is known, now,
we need a kinetic assumption for one of the transition rates w+,
w__inrordér.to.determine the transition rate for' the opposite

. process from the condition of detailled balance /B/. We decide
for an ansatz for the transition rate of attachment of free par-
ticles. ’ ‘

The Fickian law gives a relation between the flux of free
particles through a sphericel surface and the gradient of the
concentration,cl of free particles:

2

dc](r)
= -1 4“’Rj R

ot dr (371)
r=Rj ‘

Here R. means the radius of the spherical cluster, r is the
distance. from the cluster and D the diffusion constant of free
particles of component 2 in the matrix consisting of components-
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1 and 2. The gradient 1901/’ar must be determined from fhe dif-
fusion equation '

Aol(r) =0 o . (3.2)
We assume the boundary conditions

1. cl(r-v> o ) = 02§ .2, cl(r=Rj) =0 ) (3.3)
The first condition reflects that the conceéntration of. free par-
ticles apart from the cluster agrees with the actual concentra-
tion of component 2 in the matrix. The second condition means
that all free particles which arrive at the cluster surface will
be bound in the cluster - that is the meéning of the transition

rate of attachment. With egs. (3.3) we find from eq. (3.2):
) ‘

R. .
= __Jd - _ -
c(r) = CZB<1 = ) 5 (3.4)
Inserting this result into eq. (3.1) we arrive at:
CdNy .
at— = -~ 0 47‘- Rj 023 (3-5)

It seems to be sensible now to make the following ansatz for wg
in agreement with the solution (3.5) of the Fickian law:

+

Wy = o D 4TFrj Cxg ; (3.6)
CX? means the actual concentration of free particles of compo-
nent 2 in the matrix which ferm the clusters,‘r.fvjl/3 is the

cluster radius and oL is a constant which scales the time and
should reflect the properties of the surface, like surface ten-
sion, sticking coefficient -and so on. Using the condition of de-
tailled balance (eq. 2.1) with respect to egs. (2.2), (2.3),
(2.6) we find the transition rate for the. detachment of free par-
tides from the cluster in the form:

. . ‘
- 28 -1/3\ (£ V2 ;
Wy S4TO erZeqexp[(WéT ) \( kpT )] G-

e choose for the time the unknown parameter ¢ to be arbitrary
equal to one and introuuce the capillary length d0 = 2 QVE*/RBT
and the equilibrium concentration of free particles above the
curved cluster surface by
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" _o . .
Coq(Ty) = ceq2<r),exp{rj} | (3.8)
After a divisicn of the egs. (3.6) and (3.7) by the constant
exp(~ ¢ vgi/kBT),the transition rates to describe the cluster
growth and shrinkage‘with respect to elastic strains and to the
depletion of the matrix are obtained finally in the form:

o
N ] ) EVZoL
wj = 4D rj CXg exp,(— kBT }
- (3.9)
Wy 4T D rj ceq(rj)

In contrast to a classical description the transition rate of
attachment of free particles depends on the whole cluster distri-
bution because of the dependence on Xp - This fact has been ob-
tained also in isochoric gases /8,11/. Because we have in the
considered case a diffusion-contrplled cluster growth (remember
eq. (3.3) and d=1) and not an interface-conirolled growth like
in isochoric gases, w" is here only proportional to rj and not

to ;2. Moreover, it bebomes clear that elastic strains decrease
the transition rate of cluster growth to a certain extent and

the clusters/will form slowlier.

4. Deterministic growth equation for supercritical clusters

It is known from stochastic simﬁlations of the nucleation pro-
cess /8/ that for clusters with an overcritical size the proba-
bility to shrink becomes smaller cdmpared with the one descri-
bing the further growth. Therefore, the evolution of overcriti-
cal clusters can be well described by a deterministic growth
equation which neglects the brobability of shrinkage of super-
critical clusters. For the evolution of the cluster distribution
then the following Licuville equation is held /12/

N D
—d - Y
ST A3 (vaj) + Ij(t) (4.1)

Here I. denotes a source term which agrees in the considered

case with the netto rate (eq. 1.7) of cluster formation, The

first term of the r.n.s. reflects the deterministic cluster

growth and shrinkage. v. means the deterministic velocity which
"can be derived from /12/
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L :
Vi Tat t Yy oYy (4.2)

Inserting the known transition rates w*, w~ (eq. 3.9) it yields
for the considered case:

v, = 4D r txg

d
0
3 quXP(EEOJ (4.3)

Use of power expansion for the exponential functions up to the
first order leads to: ' \

0 : ’ -

© CXy tAY d_o :

i 24 0

v, = 4TD r.c En - —-—] (4.4)
3 3 Zeq Czeq(T) kBT ) rj

Finally, we introduce the critical cluster size given by eq.
(2 8) and arrlve at the determlnlstlc growth equation

v\_‘.| = 4D do c, (T) r (~——?—7 - '—) (4.5)

In eq. (4.5) the critical radius rcr(t) (eq. 2.8B) acts as an se~
lection value. Only clusters with a radius rj larger than Top
are able to grow, clusters with a size Ty < rop must shrink and
diminish again. In contrast to classical nucleation theory the
critical radius depends on time now, because Xy depends on time.

It increases from an initial value

gv : .
£ (120) = do(ln,CZ:q -‘—Eg%ﬁ) | (4.6)
‘which agrees with Tor for thg classical infinite system, up to §
the value of the stable cluster size (compare Fig. 2 in the
foregoing paper /4/) and vj becomes equal to zero in stable
equilibrium,

Note that eq. (4.5) is related to known equations describing
the selection of different species in self-organizing sYstems
/5,13/. Deterministic equations for crystdl growth in visco-
elastic and elastic media derived from a quite different ansatz
but in conclusion similar to eq. (4.5) are given in /1,2/.

In order to solve the kinetic eguations (1.6), (1.7), (4.1) for
nucleation and growth of clusters we use now the follow1ng boun-
dary conditions:
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7

(i) Nj(t=0) = 0 for j»2; that means initially only free partic-
les of component 2 exist in the system.

(ii) Clusters with a size 3> j*) jCr are no longer considered in
terms of the rate equation. Classically their further growth will
be neglected. We describe the cluster growth for j»>j* by a de-
terministic growth equation (4.1) where for j = j* the source
term is given by the netto rate Ij(t) (eq. '1.7). For j >j* the
source term results from the cluster growth. only.

(iii) Nj(t) = Ng for j{ u, that means the cluster distribution
is equal to the eguilibrium distribution (eq. 2.2) up to a small
cluster size u (about five particles). ‘
(iv)ufhe conservation of the total particle number of component
2 gngNj = const. is always fulfilled. .

The given kinetic equations are applied now to cluster growth in
a solid solution. The parameters are related to a silver haloge-
nide/natrium borate solution where AgCl-clusters are formed, but
we are-not éngaged'here'in a comparison between theory and ex-
periment. Only the initial stage of the phase transition is in-
vestigated. For results in comparison with measurements for lar-
ger times.we refer the reader to refs. /1,2,14/.

i

!

5. Solution of the kinetic' equations’

The investigation of nucleation and growth in the solid solution
shall demonstrate , o

" (i) the influence of the depletion of the matrix and

(ii) the influence of elastic strains

on ihe kinetics of phase transition during the first stage.

(1) The effect of depletion is demonstrated in Fig. 1 which pre-
sents the netto rates of cluster formation in the limit of va-
nishing elastic strains (€= 0). Curve a is obtained considering
a phase transition without any depletion as assumed in classical
nucleation theory. In this case a stationary nucleation rate is

_established (I, = Ij+l = ... = I = const.) which can be appro-
ximated by /9/% .
A¥
-1 .
s. [y T E o
DR +,,0 amloexp-(z Ko T rcr} G.1
214 WJNJ B .
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35"1) which is derived in classi-

I, is a constant (about 107t w”
cal nucleation theory /9/. Top
classically constant because the depletion is neglected. It is
obtained from eq. (4.6) keeping in mind that-in Fig. 1 ¢ = 0.

In a quasi-stationary approximation /5,15/ the classical formulae
for the nucleation rate (eq. 5.1) is used, but now taking into -
account the depletion of the matrix by the already formed clu-
sters. This results in a iime dependence of the crifical radius
which is now givén by eqg. (2.8) with £ = 0. Curve b (Fig. 1) pre-
sents the guasi-stationary nucleation rate. Caused by the deple-
tion;a slight decrease of I is obtained in the initial stage of

means the critical radius being

the phase transition.

But the quasi-stationary approximation still neéiects the
further growth of the already formed clusters. This effect in-
creases the depletion of the matrix considerably, it -predomina-
tes the depletion caused by the cluster formatiom only. There-
fore, the nucleation process cannot longer be described as a
stationary process. Instead of approximation (5.1) we now have

B T T )
Tn (b)
E, i
=2 7
g

11._.

7+ - !

0 1 ] I

0 0125 025 0375 05
—= t[s] , \

Fig. 1: Rate of cluster formation I (clusters/mjs) in dependence
on time (s)
(a) classical nucleation rate (eq. 5.1), (b) quasi-
steady state approximation, (¢) I(j..) (eq. 1.7), (d),
I(3=250) (eq. 1.7) er
The parameters are related to a silver halogenide/na-
trium borate solution, c = 2.1.10%m"®, x = 0.02,-7 =
730 K, €= 10
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to solve the system of rate equations (1.7) because both nuclea-
tion of critical clusters and growth of supercritical clusters
depend reciprocally and should be described simultanously /15/.
The nonstationary nucleation rate of critical clusters (cf. also
/16/) is given in curve ¢ (Fig. 1). After a certain time lag,
known already from classical nucleation theory, I(jcr) is neafly

. constant in a small range of the time - only for this range a
steady state approximation should be satisfied.

But we note that ICr is always smaller than the value yiven by
the classical formulae. This fact can be understood only from a
kinetic point of view: Because we start with a distribution of
only free particles first during the time lag a metastable equi-
librium cluster distribution is established which-decreases in
a very short time the initial supersaturétion to a certain va-
lue /8/ (compare Fig. 3). Only this value gives the real "ini-

“tial" supersaturation for the ‘nucleation of critical clusters.
The classical nucleation theory ignores this relaxation into the
metastable state for a calculatisn of I°. Curve ¢ shows that
I(jcr) after a small time decreases rapidly caused by the de-
pletion. Keep in mind, that in the same time the critical clu-
ster size jcr is increased, too. } ’

Curve d of Fig. 1 gives the nucleation rate to form clusters
with 250 particles. I(j=250) is used to be the source term for
the growth equation (4.1). Clusters with a size J > 250 are al-
ways supercritical for the considered times (t40.7 s), there-
fore, ‘their further growth here is described by the determini-
stic growih equation. It is shown that the time lag to form
clusters of 250 particles becomes much greater. As discussed be-
fore, also for I(j=250) no stationary.value could be cbtained -
after a certain time it decreases again (not clearly to be seen
in Fig. 1.).

The largest cluster obtained in the system after t = 0.64 s
has got a size of 1.9 nm that means nearly 2400 particles. It
becomes clear that such a decrease of the free particles in the
system should be not ignored in the initial stage of .the phase

transition.
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Fig. 2: Rate .of cluster formation I (clusters/m3s) in dependence
. on time (s) g ' ¢

(a) classical nucleatigh rate (eg. 4.1), (b) I(3=250)
(eq. 1.7) 7.3
solid lines: € = 0, dashed lines: ¢ =-6.1¢10"Jdm ~ _

For the parameters see Fig. 1.

(ii) In order to investipate the influence of elastic strains
- we calculate both the classical nucleation rate I® = const. and
the rate I(3=250) for two values of ¢ . The solid lines in Fig.
2 give the nucleation rates without elastic strains, the dashed
lines consider elastic strains. The curves (a) represent the
classical steady-state nucleation rate (eq. 5.1). It is shown
that elastic strains decrease I° considerably because the effec-
tive supersaturation A;ge/kBT (eq., 2.7) becomes smaller in de--
pendence on § . In contrast to (a) the curves (b) give the non-
stationary nucleation rate I(3j=250) obtained from a solution of
. the system of rate equations (egs. 1,6, 1.7). After the time lag
the netto rate for g€ = 0 increases faster, but also decreases
earlier than the rate in presence of.€ . This fact must be un-
derstood also kinetically:? '

Fig. 3 gives the effective supersaturation (eq. 2.7) in de-
pendence on time. Because the initial concentration of free par-
ticles in the system, cx, is equal in both cases, the existence
of elastic stirains decreases the initial.supersaturation compa-
red with €= 0. A lower'supersaturation relaxes slowlier into
its eguilibrium value. This fact has been discussed also for

80



2 : T T T Fig. 3¢
Effective supersaturation
5 Ag /kgT (eq. 2.7) in de-
;é?ls 7 penderice on time t (s),
g @ () €=0, () €=
1 | g 6.1-107 Im~>
‘ ?_ _‘ S (b) For the parameters sece
Fig. 1.
05 -
0 . 1 i 1 i
0 012 024 036 048

, — tls]
stochastic simulations of the nucleation process /8,5/. It be-
comes clear that after a certain time the supersaturation for

€= 0 is more decreased because it reduces faster and the nuc-
leation rate becomes smaller compared with € >0. That means the
period of formation of clusters becomes longer for systems where '
elastic strains exist, because the relaxation processes proceed
slowlier. ] ) ’
We summarize the yesults for the kinetics of phase transi-
tion obtained for the first period, now, as follows:
1. In finite systems a depletion of the matrix is obtained cau-
sed by the formation of new clusters and the growth of already
formed clusters. Therefore, the critical radius of cluster forma-
tion depends on time.

» 2. Since this depletion cannot be neglected,a nonstationary nuc-
leation rate must be calculated from a system of rate equations.
A deterministic growth equation déscfibes the further growth of

the already formed supercritical clusters. '

3. The nucleatioh process of formation of critical clusters .

starts with a supersaturation smaller than the initial supersa-

turation, beca&se the system first relaxes in a metastable equi--

librium state. ' ‘ ,

4. Elastic strains lead to a decrease of the supersaturation.
Smaller supersaturations relax slowlier into the equilibrium va-

“lue, therefore, the nucleatioh period becomes longer in the pre-

sence of elastic strains. :
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